Stable carbon isotope fractionation by methylotrophic methanogenic archaea.

نویسندگان

  • Jörn Penger
  • Ralf Conrad
  • Martin Blaser
چکیده

In natural environments methane is usually produced by aceticlastic and hydrogenotrophic methanogenic archaea. However, some methanogens can use C(1) compounds such as methanol as the substrate. To determine the contributions of individual substrates to methane production, the stable-isotope values of the substrates and the released methane are often used. Additional information can be obtained by using selective inhibitors (e.g., methyl fluoride, a selective inhibitor of acetoclastic methanogenesis). We studied stable carbon isotope fractionation during the conversion of methanol to methane in Methanosarcina acetivorans, Methanosarcina barkeri, and Methanolobus zinderi and generally found large fractionation factors (-83‰ to -72‰). We further tested whether methyl fluoride impairs methylotrophic methanogenesis. Our experiments showed that even though a slight inhibition occurred, the carbon isotope fractionation was not affected. Therefore, the production of isotopically light methane observed in the presence of methyl fluoride may be due to the strong fractionation by methylotrophic methanogens and not only by hydrogenotrophic methanogens as previously assumed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria.

The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as approximately 70 per thousand) shifts in delta(13)C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70 per thousand) occurs...

متن کامل

Carbon isotope fractionation during anaerobic degradation of methyl tert-butyl ether under sulfate-reducing and methanogenic conditions.

Methyl tert-butyl ether (MTBE), an octane enhancer and a fuel oxygenate in reformulated gasoline, has received increasing public attention after it was detected as a major contaminant of water resources. Although several techniques have been developed to remediate MTBE-contaminated sites, the fate of MTBE is mainly dependent upon natural degradation processes. Compound-specific stable isotope a...

متن کامل

Stable Carbon Isotope Fractionation by Methanogens

Introduction: Methanogenic archaea, which consume CO2 and H2, have been considered models for possible life forms on Mars for a long time, even before the discovery of methane in the Martian atmosphere (1-8). Several intensive experimental studies have been conducted to investigate survivability of methanogens under conditions that approach those found on Mars (2, 3, 9). Various potential sourc...

متن کامل

Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria

Chloromethane (CH3 Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this ...

متن کامل

Concurrent Methane Production and Oxidation in Surface Sediment from Aarhus Bay, Denmark

Marine surface sediments, which are replete with sulfate, are typically considered to be devoid of endogenous methanogenesis. Yet, methanogenic archaea are present in those sediments, suggesting a potential for methanogenesis. We used an isotope dilution method based on sediment bag incubation and spiking with 13C-CH4 to quantify CH4 turnover rates in sediment from Aarhus Bay, Denmark. In two i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 21  شماره 

صفحات  -

تاریخ انتشار 2012